IMPLEMENTASI ALGORITMA NAIVE BAYES UNTUK PREDIKSI CALON PENERIMA BLT
نویسندگان
چکیده
Permasalahan terjadi di Desa Tridaysakti, Kabupaten Bekasi banyak masyarakat yang tidak mendapatkan BLT, menilai pihak desa kurang objektif dan transparan dalam proses penerima BLT. Diperlukan prediksi perhitungan kriteria BLT dengan menggunakkan teknik Data Mining yaitu Algoritma Naive Bayes untuk memberi pengetahuan serta membuat keputusan data kepada sehingga dapat mengetahui layak atau menerima ini akan implementasikan ke sistem informasi bahasa pemrograman PHP. Pada penelitian digunakan metode CRISP-DM pengembangan sistem, pengujiannya menggunakan manual Rapidminer training sebanyak 282 testing 2 Bayes, pengujian dilakukan nilai Confussion Matrix dihasilkan Accuracy,Precision, Recall masing-masing 100%.. 197 85 RapidMiner didapatkan hasil Performance tingkat Accuracy sebesar 98,82% , Precision 100%, 96,97%.
منابع مشابه
Spam Filtering with Naive Bayes - Which Naive Bayes?
Naive Bayes is very popular in commercial and open-source anti-spam e-mail filters. There are, however, several forms of Naive Bayes, something the anti-spam literature does not always acknowledge. We discuss five different versions of Naive Bayes, and compare them on six new, non-encoded datasets, that contain ham messages of particular Enron users and fresh spam messages. The new datasets, wh...
متن کاملDiagnosis of Pulmonary Tuberculosis Using Artificial Intelligence (Naive Bayes Algorithm)
Background and Aim: Despite the implementation of effective preventive and therapeutic programs, no significant success has been achieved in the reduction of tuberculosis. One of the reasons is the delay in diagnosis. Therefore, the creation of a diagnostic aid system can help to diagnose early Tuberculosis. The purpose of this research was to evaluate the role of the Naive Bayes algorithm as a...
متن کاملHidden Naive Bayes
The conditional independence assumption of naive Bayes essentially ignores attribute dependencies and is often violated. On the other hand, although a Bayesian network can represent arbitrary attribute dependencies, learning an optimal Bayesian network from data is intractable. The main reason is that learning the optimal structure of a Bayesian network is extremely time consuming. Thus, a Baye...
متن کاملSupervised Naive Bayes Parameters
Bayesian network models are widely used for supervised prediction tasks such as classification. The Naive Bayes (NB) classifier in particular has been successfully applied in many fields. Usually its parameters are determined using ‘unsupervised’ methods such as likelihood maximization. This can lead to seriously biased prediction, since the independence assumptions made by the NB model rarely ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Jurnal Informatika Teknologi dan Sains (Jinteks)
سال: 2023
ISSN: ['2686-3359']
DOI: https://doi.org/10.51401/jinteks.v5i3.3106